Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 13: 989298, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2065518

RESUMEN

The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas , Virus ARN Monocatenarios Positivos , Animales , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Estadios del Ciclo de Vida , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN , Proteínas Virales/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(31): e2121453119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1960614

RESUMEN

Human ZAP inhibits many viruses, including HIV and coronaviruses, by binding to viral RNAs to promote their degradation and/or translation suppression. However, the regulatory role of ZAP in host mRNAs is largely unknown. Two major alternatively spliced ZAP isoforms, the constitutively expressed ZAPL and the infection-inducible ZAPS, play overlapping yet different antiviral and other roles that need further characterization. We found that the splicing factors hnRNPA1/A2, PTBP1/2, and U1-snRNP inhibit ZAPS production and demonstrated the feasibility to modulate the ZAPL/S balance by splice-switching antisense oligonucleotides in human cells. Transcriptomic analysis of ZAP-isoform-specific knockout cells revealed uncharacterized host mRNAs targeted by ZAPL/S with broad cellular functions such as unfolded protein response (UPR), epithelial-mesenchymal transition (EMT), and innate immunity. We established that endogenous ZAPL and ZAPS localize to membrane compartments and cytosol, respectively, and that the differential localization correlates with their target-RNA specificity. We showed that the ZAP isoforms regulated different UPR branches under resting and stress conditions and affected cell viability during ER stress. We also provided evidence for a different function of the ZAP isoforms in EMT-related cell migration, with effects that are cell-type dependent. Overall, this study demonstrates that the competition between splicing and IPA is a potential target for the modulation of the ZAPL/S balance, and reports new cellular transcripts and processes regulated by the ZAP isoforms.


Asunto(s)
Transición Epitelial-Mesenquimal , ARN Mensajero , ARN Viral , Proteínas de Unión al ARN , Respuesta de Proteína Desplegada , Transición Epitelial-Mesenquimal/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
3.
Signal Transduct Target Ther ; 5(1): 125, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: covidwho-654479

RESUMEN

Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson's diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Proteínas de Choque Térmico/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Antivirales/síntesis química , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Regulación de la Expresión Génica , Proteínas de Choque Térmico/agonistas , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/agonistas , Ribonucleoproteínas Nucleares Heterogéneas/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Terapia Molecular Dirigida/métodos , Pandemias , Neumonía Viral/genética , Neumonía Viral/patología , Neumonía Viral/virología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Transducción de Señal , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos
4.
Med Hypotheses ; 144: 110212, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-733695

RESUMEN

SARS-CoV-2 neurotropism has been increasingly recognized by its imaging and syndromic manifestations in the literature. The purpose of this report is to explore the limited yet salient current evidence that SARS-CoV-2's host genomic targets PTBP1 and the 14-3-3 protein isoform encoding genes YWHAE and YWHAZ may be hold the key to understanding how neurotropism triggers neurodegeneration and how it may contribute to the onset of neurodegenerative disease. Considering that PTBP1 silencing in particular has recently been shown to reverse clinical parkinsonism and induce neurogenesis, as well as the known interactions of PTBP1 and YWHAE/Z with coronaviruses - most notably 14-3-3 and SARS-CoV, recent studies reinvigorate the infectious etiology hypotheses on major neurodegenerative disease such as AD and iPD. Considering that human coronaviruses with definite neurotropism have been shown to achieve long-term latency within the mammalian CNS as a result of specific accommodating mutations, the corroboration of genomic-level evidence with neuroimaging has vast potential implications for neurodegenerative disease.


Asunto(s)
Proteínas 14-3-3/genética , COVID-19/complicaciones , COVID-19/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , COVID-19/virología , Regulación de la Expresión Génica , Interacciones Microbiota-Huesped/genética , Humanos , Modelos Neurológicos , Degeneración Nerviosa/etiología , Degeneración Nerviosa/genética , Pandemias , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA